497 research outputs found

    Superfluidity versus Anderson localization in a dilute Bose gas

    Get PDF
    We consider the motion of a quasi one dimensional beam of Bose-Einstein condensed particles in a disordered region of finite extent. Interaction effects lead to the appearance of two distinct regions of stationary flow. One is subsonic and corresponds to superfluid motion. The other one is supersonic, dissipative and shows Anderson localization. We compute analytically the interaction-dependent localization length. We also explain the disappearance of the supersonic stationary flow for large disordered samples.Comment: 4 pages, 3 figures, final published versio

    Band Distributions for Quantum Chaos on the Torus

    Get PDF
    Band distributions (BDs) are introduced describing quantization in a toral phase space. A BD is the uniform average of an eigenstate phase-space probability distribution over a band of toral boundary conditions. A general explicit expression for the Wigner BD is obtained. It is shown that the Wigner functions for {\em all} of the band eigenstates can be reproduced from the Wigner BD. Also, BDs are shown to be closer to classical distributions than eigenstate distributions. Generalized BDs, associated with sets of adjacent bands, are used to extend in a natural way the Chern-index characterization of the classical-quantum correspondence on the torus to arbitrary rational values of the scaled Planck constant.Comment: 12 REVTEX page

    Understanding deterministic diffusion by correlated random walks

    Full text link
    Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line and the periodic Lorentz gas. Starting from suitable Green-Kubo formulas we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coeficients in terms of dynamical correlations.Comment: 13 pages (revtex) with 5 figures (postscript

    Enhancement of the Nernst effect by stripe order in a high-Tc superconductor

    Full text link
    The Nernst effect in metals is highly sensitive to two kinds of phase transition: superconductivity and density-wave order. The large positive Nernst signal observed in hole-doped high-Tc superconductors above their transition temperature Tc has so far been attributed to fluctuating superconductivity. Here we show that in some of these materials the large Nernst signal is in fact caused by stripe order, a form of spin / charge modulation which causes a reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of stripe order causes the Nernst signal to go from small and negative to large and positive, as revealed either by lowering the hole concentration across the quantum critical point in Nd-LSCO, or lowering the temperature across the ordering temperature in Eu-LSCO. In the latter case, two separate peaks are resolved, respectively associated with the onset of stripe order at high temperature and superconductivity near Tc. This sensitivity to Fermi-surface reconstruction makes the Nernst effect a promising probe of broken symmetry in high-Tc superconductors

    Quantum Chaotic Dynamics and Random Polynomials

    Full text link
    We investigate the distribution of roots of polynomials of high degree with random coefficients which, among others, appear naturally in the context of "quantum chaotic dynamics". It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, we study in detail the particular case of self-inversive random polynomials and show that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wave-functions is also considered. For that purpose we introduce a family of random polynomials whose roots spread uniformly over phase space. While these results are consistent with random matrix theory predictions, they provide a new and different insight into the problem of quantum ergodicity. Special attention is devoted all over the paper to the role of symmetries in the distribution of roots of random polynomials.Comment: 33 pages, Latex, 6 Figures not included (a copy of them can be requested at [email protected]); to appear in Journal of Statistical Physic

    On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulence

    Get PDF
    11 pages, 12 figures.-- PACS nrs.: 52.35.Ra, 52.55.Fa, 05.40.Fb.It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities.Research was carried out at Oak Ridge National Laboratory, managed by UT-Battelle LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. Research was funded by the DOE Office of Science Grant No. DE-FG02-04ER54741 at University of Alaska and Grant No. DEFG02-04ER54740 at UCLA. Simulations run, thanks to grants for use of supercomputing resources at the University of Alaska’s Arctic Region Supercomputing Center in Fairbanks, DOE’s National Energy Research Scientific Computing Center (NERSC) in Berkeley, and the Spanish National Supercomputing Network (RES) in Barcelona and Madrid.Publicad

    Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa2_{2}Cu3_{3}Oy_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    Full text link
    The Seebeck coefficient SS of the cuprate YBa2_{2}Cu3_{3}Oy_{y} was measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11p = 0.11 and p=0.12p = 0.12, for heat currents along the aa and bb directions of the orthorhombic crystal structure. For both directions, S/TS/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in SbS_{\rm b}, for conduction along the bb axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the bb axis only. Because these modulations have a sharp onset temperature well below the temperature where S/TS/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature.Comment: 7 pages, 5 figure

    Distribution of Husimi Zeroes in Polygonal Billiards

    Get PDF
    The zeroes of the Husimi function provide a minimal description of individual quantum eigenstates and their distribution is of considerable interest. We provide here a numerical study for pseudo- integrable billiards which suggests that the zeroes tend to diffuse over phase space in a manner reminiscent of chaotic systems but nevertheless contain a subtle signature of pseudo-integrability. We also find that the zeroes depend sensitively on the position and momentum uncertainties with the classical correspondence best when the position and momentum uncertainties are equal. Finally, short range correlations seem to be well described by the Ginibre ensemble of complex matrices.Comment: includes 13 ps figures; Phys. Rev. E (in press

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure

    Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor

    Full text link
    The nature of the pseudogap phase is a central problem in the quest to understand high-Tc cuprate superconductors. A fundamental question is what symmetries are broken when that phase sets in below a temperature T*. There is evidence from both polarized neutron diffraction and polar Kerr effect measurements that time- reversal symmetry is broken, but at temperatures that differ significantly. Broken rotational symmetry was detected by both resistivity and inelastic neutron scattering at low doping and by scanning tunnelling spectroscopy at low temperature, but with no clear connection to T*. Here we report the observation of a large in-plane anisotropy of the Nernst effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase diagram. We show that the CuO chains of the orthorhombic lattice are not responsible for this anisotropy, which is therefore an intrinsic property of the CuO2 planes. We conclude that the pseudogap phase is an electronic state which strongly breaks four-fold rotational symmetry. This narrows the range of possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
    • …
    corecore